

The influence of breathing-induced activation on the pre-decisional information search and strategy selection

Maša Iskra, Aalim Makani, Laura Voigt, Florian Loffing, Lisa Musculus, Sylvain Laborde, Markus Raab, and Julia Spaniol

Introduction

The arousal-biased competition (ABC) theory proposes that high arousal biases information search by enhancing the processing of the most relevant or salient information regardless of the valence¹.

led to more heuristic, non-compensatory strategy use in multi-attribute decision tasks².

Respiration offers a novel approach to manipulating activation level while reducing reliance on external materials.

Studies show that **slow-paced breathing** (SPB) reduces activation by increasing cardiac vagal activity 3, while the activating effects of fast-paced breathing (FPB) have been attributed to cardiac vagal withdrawal and increased sympathetic activity 4.

Research gap

How does a breathing-induced activation manipulation influence the pre-decisional information search and strategy selection in a multi-attribute decision task?

Hypotheses

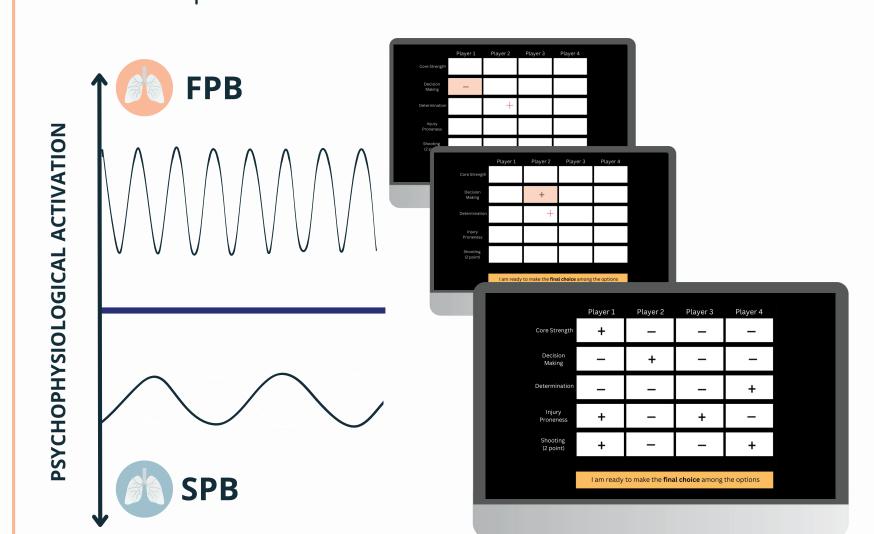
H1: Psychophysiological activation is expected to be increased through FPB and decreased through SPB. Indices collected were heart rate variability, skin conductance response, and self-reported arousal.

H2: More selective search is predicted after FPB than SPB.

H3: More frequent use of heuristic decision strategies is predicted after FPB than SPB.

Methods

Results


- sample: 63 participants ($M_{age} = 22.46$, SD = 3.39); 36 women, 24 men, two non-binary, and one trans woman
- psychophysiological activation manipulated by increasing and decreasing the breathing pace (FPB at 55 cpm and SPB at 6 cpm)
- Empirically, high psychophysiological activation has minute of paced breathing is followed by three decision trials, repeated six times (18 trials/condition)
 - methodologies and parameters:

Physiological: ECG (index - RMSSD), EDA (tonic and phasic), respiration Behavioral: a multi-attribute decision task (search and choice behavior) <u>Self-reported</u>: the self-assessment manikin (valence and arousal)

• statistical analyses: repeated-measures ANOVA, paired samples t-test

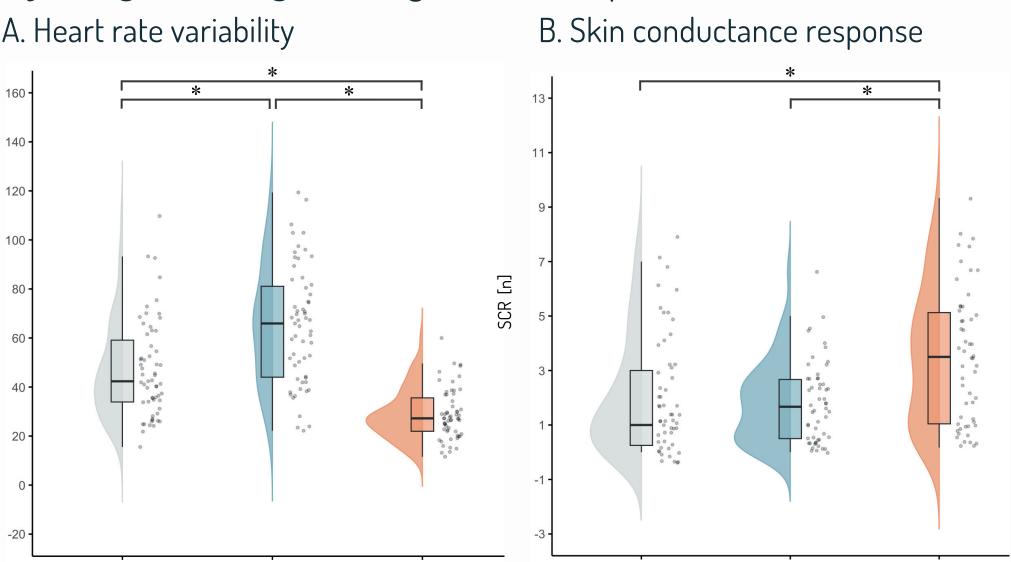
The multi-attribute decision task

- a closed information board, 4x5 matrix
- choosing one of four options based on five attributes
- context: in the role of a basketball coach, choosing a player to substitute into the match
- low time pressure of 50s/trial

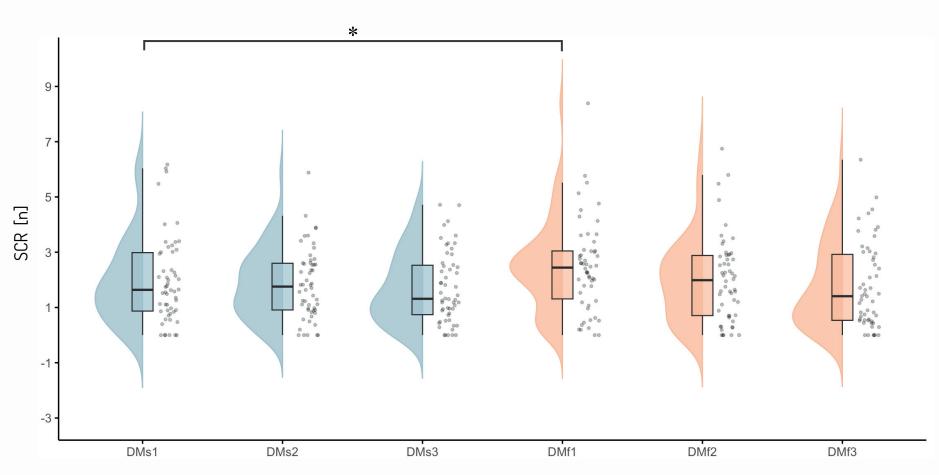
Discussion

Main findings

- Psychophysiological activation was increased through FPB and decreased through SPB (H1). FPB was evaluated as a neutral and moderately arousing stimulus, while SPB was evaluated as a mildly positive stimulus of low arousal level.
- Breathing-induced effects were reflected in a higher skin conductance response during the first decision trial that followed FPB compared to SPB.
- Partial support for the ABC predictions¹: while participants did not search more selectively (H2), they did so faster after FPB.
 - → low time pressure and lack of penalty for exploration
- In line with previous findings², high psychophysiological activation led to increased use of heuristic strategies (H3).


Limitations

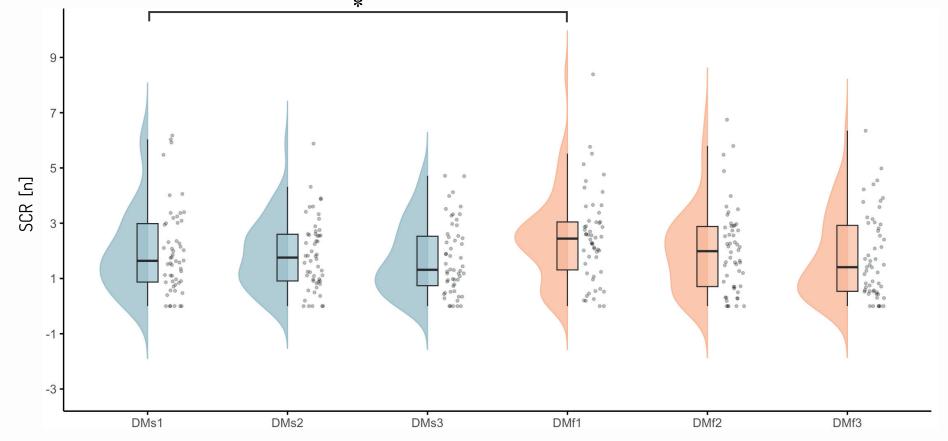
- physiological activation assessed using peripheral measures, lack of data regarding the neural response
- indirect estimation of the search (benefits of adding gaze behavior data)


Future implications

- specifying the mechanism(s) of the respiration-cognition relationship
- clarifying the temporal dynamics of psychophysiological activation
- investigating the activating effects at the motor-cognitive level

Physiological changes during breath manipulation

Physiological changes during decision trials



Arousal and valence: Self-reported arousal level was significantly higher in FPB (M = 5.98, SD = 1.98) than SPB (M = 2.67, SD = 1.49) condition, W = 38.50, p < .001, $r_{rb} = 0.95$, 95% CI [0.92, 0.97]. Valence was assessed as neutral to mildly positive, with significantly different values in FPB (M = 5.56, SD = 1.99) compared to SPB (M= 6.29, SD= 1.82) condition, W = 344.50, p = .012, r_{rb} = 0.41, 95% CI [0.12, 0.64].

Search: Participants searched quicker through the information board after FPB than SPB, t(61) = 2.05, p = .045, d = 0.26, 95% CI [0.01, 0.51], but opened a similar number of boxes in both conditions, p = .387.

Strategy: Participants used heuristic strategies significantly more often after FPB than SPB, W = 170.50, p = .017, r_{rb} = 0.46, 95% CI [0.12, 0.70].

C. Skin conductance response

Examplary search and final choice after SPB (left) and FPB (right)

P6b	Player 1	Player 2	Player 3	Player 4	P6b	Player 1	Player 2	Player 3	Player 4
Core strength	+	2	+	+	Core strength	+		+	+
Decision making	<u> </u>	+	<u> </u>	<u> </u>	Decision making	5	+	<u> </u>	<u> </u>
Determination	+	<u> </u>	+	<u> </u>	Determination	+	<u> </u>	+	_
Injury proneness	+	+	<u> </u>	<u>-</u>	Injury proneness	+	+	-	_
Shooting (2 point)	+	+	1	+	Shooting (2 point)	+	+	<u> </u>	+

Conclusion

Breathing-induced changes in psychophysiological activation influenced the search and choice behavior in a multi-attribute decision task. Fast-paced breathing led to a faster search through the cues and a more frequent use of heuristic strategies compared to slow-paced breathing.

References

- 1 Mather, M., & Sutherland, M. R. (2011). Arousal-biased competition in perception and memory. Perspectives on Psychological Science,
- 2 Wichary, S., Mata, R., & Rieskamp, J. (2016). Probabilistic inferences under emotional stress: how arousal affects decision processes. Journal of Behavioral Decision Making, 29(5), 525-538.
- 3 Laborde, S., Allen, M. S., Borges, U., Dosseville, F., Hosang, T. J., Iskra, M., ... & Javelle, F. (2022). Effects of voluntary slow breathing on heart rate and heart rate variability: A systematic review and a meta-analysis. Neuroscience & Biobehavioral Reviews, 138, 104711.
- 4 Buchanan, T. L., & Janelle, C. M. (2021). Fast breathing facilitates reaction time and movement time of a memory-guided force pulse. Human Movement Science, 76, 102762.