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1 | INTRODUCTION

Abstract

This article aimed to synthesize the various triggers of the diving response and
to perform a meta-analysis assessing their effects on cardiac vagal activity. The
protocol was preregistered on PROSPERO (CRD42021231419; 01.07.2021). A
systematic and meta-analytic review of cardiac vagal activity was conducted,
indexed with the root mean square of successive differences (RMSSD) in the
context of the diving response. The search on MEDLINE (via PubMed), Web of
Science, ProQuest and PsycNet was finalized on November 6th, 2021. Studies
with human participants were considered, measuring RMSSD pre- and during
and/or post-exposure to at least one trigger of the diving response. Seventeen pa-
pers (n =311) met inclusion criteria. Triggers examined include face immersion
or cooling, SCUBA diving, and total body immersion into water. Compared to
resting conditions, a significant moderate to large positive effect was found for
RMSSD during exposure (Hedges' g = 0.59, 95% CI 0.36 to 0.82, p <.001), but
not post-exposure (g = 0.11, 95% CI —0.14 to 0.36, p =.34). Among the consid-
ered moderators, total body immersion had a significantly larger effect than fore-
head cooling (Qy =23.46, df = 1, p <.001). No further differences were detected.
Limitations were the small number of studies included, heterogenous triggers,
few participants and low quality of evidence. Further research is needed to inves-
tigate the role of cardiac sympathetic activity and of the moderators.

KEYWORDS
cardiac vagal activity, diving reflex, diving response, heart rate variability, meta-regression,
physiology

2010 = 125 articles, from 2011 to 2022 = 372 articles). This
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In recent years, the diving response has received remark-
able attention regarding improving mental health and
well-being (Pubmed search “diving response” from 0 to

line of research has shown promising results, including
reducing symptoms of depression, followed by a gradual
reduction and eventually cessation of medication (van
Tulleken et al., 2018), increases in well-being and positive
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mood (Massey et al., 2020), reduction in both panic symp-
toms (Kyriakoulis et al., 2021) and acute psychosocial
stress responses (Richer et al., 2022). One possible expla-
nation of these findings might be a connection of the div-
ing response to the neurovisceral integration model (Smith
et al., 2017; Thayer et al., 2009; Thayer & Lane, 2000). This
article aims to synthesize the various triggers of the div-
ing response and their effects on cardiac vagal activity, to
provide further insight into the underlying psychophysi-
ological mechanisms, and to lay the foundation for more
effective interventions.

The diving response was first described by Paul Bert in
1870 and is a very important oxygen conserving mecha-
nism (Bert, 1870; Gooden, 1993; Shattock & Tipton, 2012)
that occurs in all air-breathing animals so far tested, in-
cluding human beings (Elsner & Gooden, 1983; Elsner
et al., 1971; Gooden, 1993; Lindholm & Lundgren, 2009).
It is triggered by breath-hold diving and involves a
characteristic pattern of respiratory, cardiac and vascu-
lar responses (Elsner & Gooden, 1983). To be specific,
the diving response may be defined as a combination
of (a) increased sympathetic outflow to the periphery
(Leuenberger et al., 2001) with consequent peripheral
vasoconstriction and reduced blood flow to peripheral
capillary beds (Elsner et al., 1971), rising mean arterial
blood pressure (Gooden, 1993), and (b) parasympathetic
activation marked by bradycardia, that is, a reduction in
heart rate (Elia et al., 2021; Elsner & Gooden, 1983; Foster
& Sheel, 2005; Lindholm & Lundgren, 2009; Shattock &
Tipton, 2012). In particular, via the nucleus tractus soli-
tarii, the diving response is expected to have substantial
effects on cardiac vagal activity, the activity of the vagus
nerve regulating cardiac functioning (Foster & Sheel, 2005;
Gooden, 1993; Lindholm & Lundgren, 2009; Shattock &
Tipton, 2012).

While these effects on cardiac vagal activity have
been investigated on various occasions, to date, there is
no comprehensive overview of the effects of the vari-
ous diving response triggers on cardiac vagal activity in
humans. Previous reviews, while contributing greatly
to our knowledge, focused on specific and different re-
search questions. This focus includes animals (Panneton
& Gan, 2020; Ponganis et al., 2017), different physiolog-
ical aspects, such as those involved in increased apnea
duration (Caspers et al., 2011; Elia et al., 2021; Patrician
et al., 2021; Pendergast et al., 2015), or on autonomic con-
flict (i.e., the activation of two antagonistic autonomic
responses to cold water submersion, one being the cold
shock response triggering a sympathetically driven tachy-
cardia, and the other being the diving response triggering
a parasympathetically mediated bradycardia) (Shattock &
Tipton, 2012). While the models presented in these arti-
cles attribute the bradycardia to increased cardiac vagal

activity without further explanation, some further details
about the mechanisms at stake may be found in Shattock
and Tipton (2012) and Foster and Sheel (2005). However,
to date, no meta-analysis investigating the effects of differ-
ent diving response triggers on cardiac vagal activity has
ever been performed, a gap sought to be addressed in the
current article.

Discovering optimal triggers of the diving response,
that is, effective, cheap and easy to implement, is rele-
vant for both research and applied purposes. In the psy-
chotherapeutic treatment of panic disorder, for example,
one major challenge when fear is elicited is the patient's
dysregulated autonomic nervous system. Cold water face
immersion has been found to decrease anxiety and panic
symptoms (Kyriakoulis et al., 2021). Facial cooling using
ice packs, on the other hand, reduces stress responses in
healthy participants (Richer et al., 2022). In both these ex-
amples it remains unclear why exactly these results occur,
and which intervention should be preferred by a practi-
tioner. Furthermore, these interventions suggest that the
diving response can be triggered independently of breath-
holding, which is in accordance with the model by Foster
and Sheel (2005). Thus, the diving response holds very
promising potential as an intervention in psychotherapy
(Kyriakoulis et al., 2021; Massey et al., 2020; van Tulleken
et al., 2018), the work place (Richer et al., 2022), and as
a recovery strategy for athletes (Al Haddad et al., 2010).
Yet, to fully develop this potential, it is mandatory to un-
derstand the mechanisms behind the diving response and
its effects on health, well-being, and performance. Due to
its suggested effects on cardiac vagal activity, one possible
explanation could be found in the neurovisceral integra-
tion model (Smith et al., 2017; Thayer et al., 2009; Thayer
& Lane, 2000).

The neurovisceral integration model proposes
that a central autonomic network plays an important
role in both emotional well-being and cognitive per-
formance, with its functioning reflected in cardiac
vagal activity; that is the activity of the vagus nerve
regulating cardiac functioning (Smith et al., 2017;
Thayer et al., 2009; Thayer & Lane, 2000). Cardiac
vagal activity can be indexed non-invasively using
heart rate variability (HRV) (Berntson et al., 1997).
HRV represents the variation in the time intervals
between successive heartbeats. In order to evaluate
cardiac vagal activity, the HRV parameters assess the
root mean square of successive differences (RMSSD)
(Berntson et al., 1997; Malik et al., 1996) and a breath-
ing frequency of 9 to 24cycles per minute, the high
frequency (HF) (Berntson et al., 1997; Kromenacker
et al., 2018). In the current analysis, we want to com-
pare the diving response in different breathing condi-
tions (e.g., breath-hold, breathing through a snorkel,
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or SCUBA diving), potentially affecting breathing fre-
quency. Consequently, because RMSSD is less affected
by breathing influences (Penttild et al., 2001), only
RMSSD was considered for the present meta-analysis,
allowing comparison between various breathing
conditions.

There are several ways to trigger the diving re-
sponse, such as facial immersion in water (Al Haddad
et al., 2010; Kinoshita et al., 2006), and total body sub-
mersion. In both cases, variations may include breath-
hold (Costalat et al., 2015; Schipke & Pelzer, 2001),
breathing through a snorkel (Al Haddad et al., 2010;
Schipke & Pelzer, 2001), or, for total body submersion
only, case self-contained underwater breathing appa-
ratus (SCUBA) diving (Chouchou et al., 2009; Lundell
et al., 2019; Lundell et al., 2021; Noh et al., 2018;
Schipke & Pelzer, 2001; Weist et al., 2012). A third po-
tential trigger is cooling of the face (e.g., using an ice
pack) (Allen et al., 1992; Louis et al., 2015; Ruschil
et al., 2021; Schlader et al., 2016). However, it is yet
unclear to which extent these triggers affect cardiac
vagal activity. Thus, the current article aims to system-
atically synthesize this information and conduct two
meta-analyses of the existing literature about RMSSD
pre-exposure compared to exposure and pre- compared
to post-exposure.

Given the multitude of triggers of the diving re-
sponse, several potential moderators were also consid-
ered. According to the model of the diving response by
Foster and Sheel (2005), apnea is essential to experienc-
ing the full diving response, and cold water (<15°C) leads
to larger effects than warm water (>15°C) (Asmussen &
Kristiansson, 1968; Daly, 1997; Mukhtar & Patrick, 1986).
Thus, water temperature and apnea (versus breathing,
for instance via snorkel or SCUBA diving) were investi-
gated as moderators. Further, we differentiated between
face and total body immersion. Cooling of the body up to
the breastbone is associated with increased cardiac vagal
activity (Kovacs & Baker, 2014); hence, different types of
immersion might have different effects on cardiac vagal
activity. Movement (versus remaining still during expo-
sure to the trigger) was investigated as a moderator, be-
cause cardiac vagal activity decreases during movement
(Stanley et al., 2013).

2 | METHOD

The Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) guidelines (Moher et al., 2009;
Page, McKenzie, et al., 2021; Page, Moher, et al., 2021;
Shamseer et al., 2015) were adopted for the literature
search and writing process. The PRISMA checklist is

IPSYGHOPHYSIUI.OGY -

provided as a supplementary file. The protocol was regis-
tered on PROSPERO (CRD42021231419) before the analy-
sis (last edited version: 01.07.2021).

2.1 | Information sources

The literature search was conducted using MEDLINE (via
PubMed), Web of Science, ProQuest, and PsycNet from
inception until November 6th, 2021. The following search
string was used for all libraries: ((“diving reflex”[MeSH]
OR “diving response” OR “water immersion” OR “water
submersion” OR “dive reflex” OR “facial immersion” OR
“facial submersion” OR “SCUBA” OR “snorkel” OR “div-
ing” [MeSH] OR “facial cooling”) AND (“HRV” OR “heart
rate variability” OR “parasympathetic” OR “vagal” OR
“vagus” OR “RMSSD”)). One researcher extracted eligible
articles (LP, see acknowledgements) that were then inde-
pendently checked by another reviewer (MRe). Discussion
with a third researcher (SA) resolved any disagreements
between the two reviewers.

2.2 | Eligibility criteria
Eligible studies were selected using the following PICOS
criteria.

2.2.1 | Population

The scope of this review is restricted to human beings,
and therefore any studies conducted on animals were ex-
cluded. No inclusion or exclusion criteria were set for par-
ticipants’ health conditions, age ranges, or gender.

2.2.2 | Intervention

This systematic review and meta-analysis targeted all em-
pirical studies examining the acute effects of the diving
response induced by the various triggers (face immersion,
total body submersion, and cooling of the entire face) on
RMSSD. Studies involving cognitive or emotional tasks
while underwater were excluded.

2.2.3 | Comparison

Studies measuring RMSSD before and during, and/or
before and after triggering the diving response were in-
cluded in this analysis. The pre-exposure condition was
used as the control condition.
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2.2.4 | Outcomes
The study had to be empirical and assessed the diving re-
sponse's influence on RMSSD.

2.2.5 | Study design

Controlled mixed and within-subject-designs were con-
sidered. Non-peer-reviewed works without a complete
methods section (such as published abstracts), as well as
single-case studies, were excluded.

In addition, only studies in English and German that
were published or pre-registered for publication in peer-
reviewed scientific journals were considered. If necessary,
authors were contacted and asked to provide missing data.
Yet, despite contacting the authors, three articles (Berry
et al., 2017; Louis et al., 2015; Schirato et al., 2018) had
unclear RMSSD data with missing information on mod-
erators or the included participants. Thus, these articles
were excluded from the meta-analysis but still considered
in the systematic review. No restrictions were made re-
garding the year of publication.

2.3 | Risk of bias
Two researchers independently (SV & DS) assessed the
risk of bias for each included study using the Cochrane
risk-of-bias tool (Sterne et al., 2019). Each study was clas-
sified into one of the following categories: low risk, some
concerns, or high risk of bias. The Cochrane risk-of-bias
tool utilizes the “intent-to-treat principle” that focuses
on the intervention assignment. As such, the fixed set of
items used in the risk of bias appraisal is “bias arising from
the randomisation process”; “bias due to deviations from
intended interventions”; “bias due to missing outcome
data”; “bias in measurement of the outcome”; and “bias
in the selection of reported results” as well as the overall
risk of bias assessment for each study. The overall risk of
bias was determined based on the highest classification
among the five risk categories. The inter-rater agreement
coefficient was calculated by comparing each of the item's
risk of bias appraisal as well as the overall risk of bias judg-
ment between both researchers. Disagreements between
the two researchers regarding the risk of bias were dis-
cussed between the two assessors (SV & DS) in every case.
The initial inter-rater agreement coefficient was calcu-
lated for each domain category as a sum of the agreement
scores divided by the number of graded items. The initial
disagreements between authors (SV & DS) were resolved
via discussion of the signaling questions and everyone's
impression of the category, with the final resolution being

in favor of the stricter ranking. This way of resolving ini-
tial disagreements led to a 100% inter-rater agreement
coefficient.

2.4 | Synthesis of results
The following data were extracted from each study: par-
ticipants’ demographic data, RMSSD values (mean and
standard deviation [SD]) of the various conditions, the
method for inducing the diving response, and information
about the moderators listed above.

RMSSD means and SD were pooled following the
guidelines in the Cochrane Handbook (see formulae in
chapter 6.5.2.10 Combining groups, Table 6.5.a) (Higgins
et al.,, 2019). The tables used are accessible via Open
Science Framework (DOI 10.17605/0OSF.I0/9W2QY or
https://osf.io/9w2qy/?view_only=6146276c0al1343469a6d
d5d65b7bfd6c).

In the within-subjects-designs, data were pooled into
one mean and SD for each pre- and during and/or post-
exposure. Differences between the total studies’ sample
size and the sample size used in this analysis are due to
additional conditions which were not relevant for this
meta-analysis (e.g., comparison of different breathing
gases), and missing data in individual cases (e.g., because
of technical issues during the measurement).

2.5 | Statistics

Statistical analyses were conducted using R (version 4.1.0).
The script can be accessed via Open Science Framework
(see 2.4).

All outcome measures were standardized using
Hedges' g for changes from pre- to exposure, and pre- to
post-exposure conditions. The Hedges' g (SMD = MD/
SDpoolea) @nd its standard error were computed accord-
ing to the formula for crossover trials from the Cochrane
Handbook (chapter 23, section 23.2.7.2). The standard
error computation required the imputation of a correla-
tion coefficient between the pre- and during exposure,
and between the pre- and post-exposure RMSSD values.
To do so, correlation coefficients were computed from
the available (or provided by the authors) raw values in
the included studies. Then, these coefficients were av-
eraged per condition ((0.39+ 0.29 + 0.35)/3 = 0.34 for
pre-during and (0.73+ 0.59)/2 = 0.69 for the pre-post).
To assess the reliability of the emitted coefficients, sen-
sitivity analyses were run up to the averaged coeffi-
cients of correlation +0.10 per 0.05 interval (0.24, 0.29,
0.39, 0.44 for pre-during and 0.59, 0.64, 0.74, 0.79 for
the pre-post; emitted data files available on OSF). Only
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minor differences in the relationships between effects
sizes, significance tests, and moderator analyses were
detected. Thus the conclusions remained unaltered,
underlining the reliability of our results. A positive g de-
notes an increase in RMSSD during the exposure or the
post-exposure condition. Hedges' g of 0.2, 0.5, and 0.8
are, respectively, considered small, moderate, and large
(Cohen, 1977; Hedges & Olkin, 1985).

Outcomes across studies were pooled using a random-
effects model (Higgins et al., 2019). Between-study hetero-
geneity was quantified using tau” (variance of true effects,
using Hedges' estimator [Hedges & Olkin, 1985]), and fur-
ther assessed using I?, which provides the percentage of
the observed variance reflecting the variance of the true
effects rather than sampling error (Higgins et al., 2003).
The prediction interval was computed to consider the
potential effect of the diving response on cardiac vagal
activity when reported in an individual study setting,
as this may be different from the average effect (Riley
et al., 2011). The Hartung and Knapp method was used to
adjust confidence intervals and test statistics (Hartung &
Knapp, 2001a, 2001b; IntHout et al., 2014).

Cook's distance with a cutoff of 0.45 was used to de-
tect potential outliers (Das & Gogoi, 2015). If outliers were
found, the analyses were to be performed both with and
without the outliers and the differences, potential reasons
for the outliers as well as implications were discussed.
Potential asymmetry was assessed by visually inspecting
the funnel plots. Furthermore, when at least ten studies
were available, the asymmetry was assessed using Egger's
test. If evidence for asymmetry was found (p <.1 on the
Egger's test), the Duval and Tweedie trim and fill method
was used to quantify the magnitude of the small study ef-
fect (Duval & Tweedie, 2000).

To detect moderator effects, subgroup analyses were
applied to the categorical variables of interest (i.e., type
of immersion, movement and breathing). Q-tests were
performed to evaluate differences between subgroups
(Higgins et al., 2019). A meta-regression was used to an-
alyze the moderating effect of the continuous variable
temperature (Borenstein & Higgins, 2013). The predictive
value of this continuous moderator was evaluated by the
goodness of fit (R?) and significance at the p =.05 level.

2.6 | Certainty of evidence

(grading of recommendations, assessment,
development, and evaluation [GRADE)]
approach)

After the analysis, SA and SB assessed the quality of evi-
dence independently using the GRADE approach (Ryan
& Hill, 2018). The evidence was graded based on the risk

IPSYGHOPHYSIUI.OGY -

of bias assessments, inconsistency, indirectness, impre-
cision, and publication bias. The quality of evidence can
be high, moderate, low, or very low. An overall judgment
about the certainty of evidence was assigned for both the
pre- during-, and the pre- post-exposure comparisons.

3 | RESULTS

Figure 1 describes the selection process. After removing
duplicates, the first step was to screen all identified arti-
cles based on their title and abstract. Step two was to scan
the full-text versions, leaving 29 articles in the selection
process. The authors were then contacted and asked to
provide missing data (e.g., RMSSD means and SD that
were not reported or unclear). Due to unclear RMSSD
data (Berry et al., 2017; Louis et al., 2015; Schirato
et al., 2018), three articles were removed from the meta-
analyses and retained only for the systematic review. Ten
articles that reported heart rate (Ferrigno et al., 1991;
Hayashi et al., 1997; Hurwitz & Furedy, 1986; Khurana &
Wu, 2006; Marabotti et al., 2013; Simmons et al., 2017) or
HRYV parameters other than RMSSD (Costalat et al., 2021;
Kinoshita et al., 2006; Kiviniemi et al., 2012; Wieske
et al., 2013) had to be excluded because no RMSSD data
were provided. One article did not provide pre- exposure
RMSSD values (Lemaitre et al., 2008). A total of 17 articles
were eligible for the systematic review, among which 13
were included in the meta-analysis (k = 14) investigating
the effect on RMSSD pre- compared to during exposure.
Six were included in the meta-analysis (k = 7) investigat-
ing the effect on RMSSD pre- compared to post-exposure.
One article reported two independent effect sizes for each
condition (Schlader et al., 2016).

3.1 | Participant characteristics

As shown in Table 1, the total number of participants in
the 17 included studies was 311 (80.1% male), with a mean
age of 34.6 +6.6years. The included studies only investi-
gated healthy participants, with an overall mean height of
177.3 £5.7 cm, mean weight of 77.7 £10.0 kg, and mean
body mass index of 24.7 +1.8 kg/m?*.

3.2 | Risk of bias
For the overall risk of bias assessment, according to the
Cochrane Risk of Bias tool, all studies were ranked as hav-
ing “some concerns” (Figure 2).

Figure 2 shows the breakdown of each study's domain
rankings.
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FIGURE 1 PRISMA flow diagram of the search process for studies examining the effect of various triggers of the diving response on the
HRYV parameter RMSSD. HRV, heart rate variability; PRISMA, preferred reporting items for systematic reviews and meta-analysis; RMSSD,

root mean square of successive differences.

3.3 | Diving response inducing
interventions

As shown in Table 1, the diving response triggers differ sub-
stantially among studies. One of the included trials tested
the effect of facial immersion (Al Haddad et al., 2010) of
facial cooling (Schlader et al., 2016), two of forehead cool-
ing (Jarczok et al. unpublished, DRKS00016597) (Ruschil
etal., 2021) and 12 of total body immersion (Berry et al., 2017;
Chouchouetal., 2009; Costalatetal., 2015; Lundell et al., 2019;
Lundell et al., 2021; Noh et al., 2018; Schaller et al., 2021;
Schipke & Pelzer, 2001; Schirato et al., 2018; Solana-Tramunt
et al., 2019; Vicente-Rodriguez et al., 2020; Weist et al., 2012).
Two trials tested immersion combined with apnea (Costalat
et al., 2015; Vicente-Rodriguez et al., 2020), two with snorkel
breathing (Al Haddad et al., 2010; Schipke & Pelzer, 2001),
and nine trials tested the effect of SCUBA diving (Berry
et al., 2017; Lundell et al., 2019; Lundell et al., 2021; Noh
et al., 2018; Schaller et al., 2021; Schipke & Pelzer, 2001;
Schirato et al., 2018; Weist et al., 2012). Another five stud-
ies did not use any breathing device or aid (Jarczok et al.
unpublished, DRKS00016597) (Louis et al., 2015; Ruschil
etal., 2021; Schlader et al., 2016; Solana-Tramunt et al., 2019).

Nine studies used cold water, ice bags or in one case cry-
ostimulation to induce the diving reflex (Jarczok et al. un-
published, DRKS00016597) (Al Haddad et al., 2010; Louis
et al., 2015; Lundell et al., 2019; Lundell et al., 2021; Noh
et al., 2018; Ruschil et al., 2021; Schaller et al., 2021; Schlader
et al., 2016), whereas the other seven used water above 15°C
(Berry et al., 2017; Chouchou et al., 2009; Costalat et al., 2015;
Schipke & Pelzer, 2001; Solana-Tramunt et al., 2019; Vicente-
Rodriguez et al., 2020; Weist et al., 2012). In three studies,
the exposure condition was dynamic (Chouchou et al., 2009;
Solana-Tramunt et al., 2019; Vicente-Rodriguez et al., 2020).
In one study, movement status was not reported (Lundell
et al., 2021) and in every other case, the participants re-
mained static during exposure.

3.4 | Primary analysis

3.4.1 | Pre-exposure compared to
during exposure

The relation between RMSSD pre-exposure and during
exposure (k = 14) had an average effect size of 0.59 (95%
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D1 D2 D3 D4 D5 o
Chouchou et al. (2009) (+1-) (-) (+) (+) (-) (-)
Noh et al. (2018) (+/-) () (+) (+) () ()
Schipke et al. (2001) (+1-) (-) (+) (+) (-) (-)
Schlader et al. (2016) (+/-) (-) (+) (+/-) (-) (-)
Weist et al. (2012) (-) (+-) (+) (+) (-) (-)
Al Haddad et al. (2009) (+) (-) (+) (+) (+/-) (-)
Lundell et al.(2019) (+) (-) (+) (+) (+/-) (-)
Lundell et al.(2021) (+) (-) (+) (+) (+/-) (-)
Rodriguez et al. (2020) (+) (-) (+) (+) (+/-) (-)
Solana et al. (2019) (+) (-) (+) (-) (+/-) (-)
Costalat et al. (2015) (-) (-) (+) (+) (-) (5),
Schirato et al. (2018) (-) (-) (+) (+) (-) (-)
Schaller et al. (2021) (-) (-) (+) (-) (-) (-)
Berry et al. (2017) (-) (-) (+) (-) (-) ()
Ruschil et al. (2021) (-) (-) (+) (+) (+) (-)
Jarczok et al. (unpublished) DRKS00016597 (-) (-) (+) (+) (+) (-)
Weimer et al. (unpublished) DRKS00016412 (-) (-) (+) (+) (+) (-)
Low Risk (+)
Low Risk/Some Concerns (+/-)
Some Concerns (-)
FIGURE 2 Risk of bias analysis. (+), low risk; (+/—) low risk/some concerns; (—) some concerns.

(a) (b)

Source SMD (95% Cl)

Schlader (2016) - Face cooling trial 1.28[0.40; 2.17] —_——

Noh (2018) 1.23[0.41;2.05] ——.—

Schipke (2001) 1.10[0.56; 1.64] — .,

Chouchou (2009) 1.10[0.26; 1.94] —.—

Schaller (2021) 0.91[0.27; 1.54] —.— Source SMD (95% CI) )

Weist (2012) 0.71[-0.08; 1.51] — Chouchou (2009) 0.52[0.05; 0.99] —

Al Haddad (2009) 0.60 [0.04; 1.25] —— Schaller (2021) 0.46 [0.07; 0.85] —

Rodriguez (2020) 0.59[0.19: 0.99] —.—: Rodriguez (2020) 0.14 [-0.12; 0.39] ——.—

e . Sl o amiowom

Schiader (2016) - Face warming trial 0.24 [<0.42; 0.90] — - Schiader (2016) - Sham 0.00 [0.45; 0.43]

Luncell 2019) 0.15 0,65 0.58] -— Lundell (2021) -0.14 [-0.45; 0.17] ——

Ruschil (2021) 0.15[-0.41;0.70] — . Solana-T (2019) -023[-065:0.19] ——T——

Jarczok et al. (unpublished) DRKS00016597 0.06 [-0.48; 0.59] —.—- Total 0.11[-0.14; 0.36] :

Total 0.59[0.36; 0.82] - Prediction interval [-0.46; 0.68] <!:>.

Prediction interval [-001; 1.19] : | | : : X Heterogeneity: 2 = 11.22 (P = 08), I = 47% N ! T !

Heterogeneity: 7, = 20.00 (P = 10), /= 35% 4 05 0 05 1 15 2 25 Test for overall effect; ts = 1.04 (P = .34) 05 0 05 !

Test for overall effect: t,3 = 5.46 (P < .001) Hedges‘ g

Hedges'g

FIGURE 3 Forest plots of the comparison pre-exposure to exposure (a) and of the comparison pre- to post-exposure conditions (b).

SMD, standardized mean difference; CI, confidence interval.

CI 0.36 to 0.82, p <.001), indicating a moderate positive
effect (Figure 3). The heterogeneity was large (predic-
tion interval [—0.01 to 1.19]) with a small to moderate
part representing the variance of the true effect (I =35%;
Tau® =0.06; Figure 3) and the rest being due to sampling
error. The prediction interval (g =—0.01 to 1.19) also in-
dicates that future studies are likely to have null or large
positive effects. No outlier was detected. No asymmetry
was detected, neither visually nor by Egger's test (inter-
cept = 0.075, p =.252). Finally, the quality of evidence was
rated as low (Table 2).

3.42 |
exposure

Pre-exposure compared to post-

The relation between RMSSD pre-exposure and post-
exposure (k = 7) had an average effect size of 0.11 (95%
CI —0.14 to 0.36, p =.34, Figure 3). The heterogeneity was
large (prediction interval [—0.46 to 0.68]) with a small to
moderate part representing the variance of the true effect
(I2 =46.5%; Tau® =0.04; Figure 3) and the rest being due to
sampling error. The prediction interval (g =—0.46 to 0.68)
indicates that future studies are likely to have between
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moderate negative and moderate to large positive effects.
While the use of this information is very limited, it illus-
trates the heterogeneity in the results and the small sam-
ple of studies captured, leading to the large heterogeneity
in the prediction interval. No outlier was detected. Visual
inspection indicated no asymmetry. Due to the small
number of studies, neither the Egger's test nor the trim
and fill analysis were performed. The quality of evidence
was rated as very low (Table 2).

These results indicate that the diving response was as-
sociated with increased cardiac vagal activity during but
not after exposure. One can note that the results described
in the article only included in the systematic review
(Schirato et al., 2018) were going in the same direction as
the meta-analysis's average effect comparing pre- to post-

3.5 | Moderator analyses

Because too few of the included studies presented results
comparing a pre-exposure to a post-exposure condition
(k = 7), it was only possible to run a moderator analysis
for the comparison between the pre-exposure and ex-
posure conditions. However, all the moderators were
asymmetrically distributed, with some categories largely
underrepresented (k = 1 or 2), leading to averaged effects
per category being primary individual-study-dependent
and not fully assessing the moderators' effect. Thus, all
results presented in these moderator analyses should not
be considered as conclusive pieces of evidence but only as
indicators of the current state of research depicted in the

3.5.1 | Cooling/immersion

Face cooling or immersion (k = 3, g = 0.65, 95% CI —0.59
to 1.90), total body immersion (k = 9, g = 0.69, 95% CI
0.43 to 0.96) and forehead cooling (k = 2, g = 0.10, 95% CI
—0.46 to 0.66) effects on RMSSD were significantly differ-
ent (Qy =26.10, df = 2, p <.001). Post-hoc head-to-head
tests showed that total body immersion had a significantly
larger effect than forehead cooling (Qy =23.46, df = 1,
p <.001); however, face cooling or immersion did not
(Qum =3.55, df = 1, p =.060). No further differences were

One of the studies (Lundell et al., 2021) had to be ex-
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participants moved or remained still during the dive was
not made clear. Movement (k = 2, g = 0.70, 95% CI —1.95
to 3.35) and remaining still (k = 11, g = 0.58, 95% CI 0.28
to 0.88) effects on RMSSD were not significantly different
(Qy =0.24, df = 1, p =.630).

3.5.3 | Breathing

Only one study was in the category breath-holding, thus
no group difference was run. Yet, one can mention that
the average effect in the breathing category was g = 0.61,
95% CI 0.36 t0 0.86 (k = 13) and g = 0.36, 95% CI —0.29 to
1.01 in the breath-holding category (k = 1).

3.5.4 | Water temperature

A meta-regression was used to investigate temperature as
a continuous moderator and revealed that temperature
accounted for none of the heterogeneity in the results
(R* =0%, df = 12, p =.372).

4 | DISCUSSION

This article is the first systematic review and meta-
analysis assessing the effects of the diving response on
cardiac vagal activity pre- compared to during- and pre-
compared to post-exposure. Out of 17 articles included
in the systematic review, 13 (reporting k = 14 independ-
ent effect sizes) were relevant for the meta-analysis
pre- compared to during-, and six (reporting k = 7 inde-
pendent effect sizes) for the meta-analysis pre- to post-
exposure. The principal findings were a positive average
effect for RMSSD during exposure (k = 14g = 0.59; 95%
CI 0.36 to 0.82), but not post-exposure (k = 7; g = 0.11;
95% CI —0.14 to 0.36). In both meta-analyses, the het-
erogeneity was large, but the variance of the true effect
was only small to moderate.

Three studies were part of the systematic review, re-
flecting to some extent our main findings, but had to be
excluded from the meta-analysis (Berry et al., 2017; Louis
et al., 2015; Schirato et al., 2018). In (Schirato et al., 2018),
the authors found no difference between the resting and
the recovery condition for the intervention group, but a
significant increase in RMSSD for the second half of the
recovery condition in the control group compared to the
resting condition pre-submersion (Schirato et al., 2018).
The second study also found a significant increase in
RMSSD during a six-hour dive (Berry et al., 2017). Finally,
the third study compared RMSSD before and after ei-
ther a 24°C control condition or a—60°C whole-body

cryostimulation in a between-subjects design (Louis
et al., 2015). Each group participated in five identical tri-
als over five consecutive days. The results of this study
showed that RMSSD (in %) changed moderately to largely
on each of the five days in the intervention group and dif-
fered significantly from the control group on three days
(Louis et al., 2015). The overall lack of a reliable effect on
post-exposure might be interpreted as a sign of the abil-
ity of the parasympathetic nervous system to adapt to the
new environment quickly. However, given the low quality
of evidence of the pre-during comparison, as assessed by
GRADE, and the very low quality of evidence of the pre-
post comparison, these results require further, systematic
investigation.

As mentioned in the results section, the modera-
tor analysis was only possible for the condition pre- to
during exposure. For the water temperature, it showed no
effect (R* =0%, df = 12, p =.372). These results appear
surprising at first because cold receptors of the face play
an important role in the diving response, and thus, cold
water has been found to cause a stronger reduction in
heart rate than water above 15°C (Foster & Sheel, 2005).
However, this might be explained by the breathing fre-
quency, which tends to be lower during diving (Hesser
et al.,, 1990; Mummery et al., 2003; Salzano et al., 1984).
Slow-paced breathing has been found to have a strong
effect on cardiac vagal activity (Laborde et al., 2017;
Laborde et al., 2021; Laborde et al., 2022; Sevoz-Couche &
Laborde, 2022; Wells et al., 2012), and apnea is discussed
to be a stronger trigger of the diving response than tem-
perature (Foster & Sheel, 2005). The effect of breathing
frequency might, therefore, have overshadowed the effect
of water temperature.

Because of the necessary activation of the body, move-
ment is usually associated with a decrease in RMSSD
(Laborde et al., 2018; Stanley et al., 2013). Here, however,
it did not influence RMSSD during exposure compared
to individuals being still (Qy =0.24, df = 1, p =.630).
However, as only two (Chouchou et al., 2009; Vicente-
Rodriguez et al., 2020) of the included studies measured
RMSSD in moving participants, these results require fur-
ther investigation.

The effects of breath-holding have been discussed as
essential to experiencing the full diving response (Foster
& Sheel, 2005). In the current review, the only study in-
cluded in the breath-holding category had a small to mod-
erate effect (g = 0.36), and thus, does not seem to align
with this point. Yet, it is important to consider that the
RMSSD response to breath-holding is made of two dis-
tinct phases (Costalat et al., 2015; Lemaitre et al., 2008).
Over the first half of the apnea (normoxic condition), the
RMSDD is relatively stable (Costalat et al., 2015; Lemaitre
et al., 2008). But, over the second phase of the apnea

351801 SUOLLLLIOD BAEBID 3(qedt|dde 8L Aq peusenob a1 a1 YO 88N 0S|I I0j ATIGIT BUIIUO 3|1 UO (SUORIPUICD-PUE-SULBILIOY" 3| 1M AZe1q][Bu!UO//SAIIL) SUOIIPUOD PUE SWLB 1 3L 385 *[220Z/0T/ZT] U A1 auliuo Aa]im ‘Auewss aueiyood Aq egTyT dASd/TTTT 0T/10p/0o" Ao 1w ATeiqjpu|uo//Sany Wy papeojumod ‘0 ‘986869%T



ACKERMANN ET AL.

13 of 18

(hypoxic condition), the RMSSD drastically increases
(Costalat et al., 2015; Lemaitre et al., 2008). In the current
analysis, the RMSSD was averaged over the entire apnea,
and thus it is very likely that the effects of the normoxic
and hypoxic conditions were canceled out. More research
on breath-holding and RMSSD as well as the influence of
various breathing frequencies during water immersion
on RMSSD is warranted. Future studies should consider
observing participants’ breathing patterns during the rest-
ing measurements before, after, and, in cases other than
breath-hold diving, during immersion. This might shed
light on the mechanisms influencing the diving response
and explain the findings of the current moderator analysis
(Grossman et al., 2004; Grossman & Kollai, 1993; Ritz &
Dahme, 2006).

Regarding the immersion type, no difference was found
between face immersion and total body immersion. This
suggests that face immersion might be as effective as total
body immersion in increasing RMSSD; however, more
studies using face immersion are required to consider the
effect of this moderator properly. Finally, a significantly
larger effect size was found for both total body immersion
(k=9,g=0.69,95% CI0.43 to 0.96) compared to forehead
cooling (k = 2, g = 0.10, 95% CI —0.46 to 0.66). These re-
sults suggest that forehead cooling is a less efficient trigger
of the diving response from a cardiac vagal activity per-
spective. Nevertheless, due to the small number of studies,
further investigation is required to confirm that face im-
mersion is a more effective trigger than forehead cooling.

4.1 | Limitations
Despite the findings of the present systematic review and
meta-analysis about the effects of the diving response on
RMSSD, several important limitations exist. First, the
numbers of studies and of independent effect sizes were
relatively low (pre- vs. during exposure meta-analysis:
k = 14; pre- vs. post-exposure meta-analysis: k = 7).
Second, the included studies varied substantially regard-
ing triggers used, duration of exposure to the trigger, par-
ticipant's diving experience, and depth of the dive. Third,
sample sizes were rather small throughout most of the
included studies (n <30). Thus, the statistical power and
the implications of the results in general and the modera-
tor analysis specifically are limited (e.g., only two of the
included studies investigated the diving response by face
immersion). Fourth, multiple moderator categories’ dis-
tributions were asymmetrical, with several being largely
underrepresented, limiting our results’ extent.

Additional limitations might arise from the fact that the
Cochrane Risk-of-Bias tool is not specialized in HRV mea-
surements. Different measurement tools and frequencies,
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as well as different measurement periods were used in the
various studies, which might affect the quality of the in-
cluded studies.

4.2 | Research perspectives

The research about the effect of the diving response on
cardiac vagal activity in humans appears to still be in
its early stages in general. While the theoretical model
of Foster and Sheel (2005) explaining the cardiorespira-
tory mechanisms of the diving response provides a solid
foundation regarding the mechanisms of the diving re-
sponse, several inconsistencies need to be addressed in
future research. Firstly, the assumption that the brady-
cardia observed in the diving response solely results from
an increased cardiac vagal activity is challenged by the
results of one of the study included in this systematic
review (Costalat et al., 2015), as well as by the results of
other studies not included (Gallo Jr. et al., 1988; Kiviniemi
et al., 2012; Lemaitre et al., 2008). In these studies, cardiac
vagal activity remained constant for the first half of the
maximal breath-hold dive and increased exponentially
during the second half, while the heart rate decreased im-
mediately, and showed an additional reduction during
the second half. Thus, increased parasympathetic activity
might only cause further bradycardia in the second half of
a breath-hold dive, while the main reason for the strong
bradycardia observed during the first half of the breath-
hold dive might be decreased cardiac sympathetic activity,
or another mechanism. For example, mechanical influ-
ences on heart rate as part of the diving response have
also been suggested (Shattock & Tipton, 2012); however,
the precise nature of these influences, under which condi-
tions they occur, and their particular effects have yet to be
investigated.

Understanding these mechanisms is important both
from an applied, as well as from a theoretical perspec-
tive (Foster & Sheel, 2005; Shattock & Tipton, 2012).
According to the neurovisceral integration model, cardiac
vagal activity is related to emotion regulation and cogni-
tive performance (Smith et al., 2017; Thayer et al., 2009;
Thayer & Lane, 2000). Therefore, if an increased cardiac
vagal activity is the causal link between (breath-hold) face
immersion and the observed bradycardia, a bowl of cold
water might be an effective intervention, e.g., before job
interviews and certain athletic tasks (penalty, free throw,
playing darts, etc.). On the other hand, if a reduced car-
diac sympathetic activity is responsible for the bradycar-
dia, or perhaps a different explanation altogether, the
possible applications might be different. As face immer-
sion is already being investigated as a recovery strategy (Al
Haddad et al., 2010) and in psychotherapy (Kyriakoulis
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et al., 2021), understanding exactly how it works and
which triggers offer the best compromise (strong, signif-
icant effects, and cheap, easy to implement), is important
to improve such interventions.

Therefore, future research should combine cardiac
vagal activity measurements with other markers, such as
the pre-ejection period measured with impedance cardiog-
raphy to index cardiac sympathetic activity (Forouzanfar
et al., 2018; Sherwood et al., 1990). Furthermore, when
investigating the diving response in a systematic and con-
trolled manner, example, for 30s per condition (Kinoshita
et al., 2006), measuring the maximal breath-hold time is
essential to put the fixed conditions in perspective. While
RMSSD might be increased in someone who can breath-
hold dive for 35s, there might be no significant changes
in someone who can breath-hold dive for several minutes.
Without considering the maximal breath-hold time, the
misleading conclusion might be that a certain trigger is
ineffective when the exposure was too short.

Secondly, according to the theoretical model of (Foster
& Sheel, 2005), breath-holding is essential to experience
the full effect of the diving response, and cold water causes
a stronger response than warm (>15°C) water. Potentially
due to the few studies included here and the large hetero-
geneity between diving response conditions, the results of
the current moderator analyses do not support this claim.
Further investigation is needed to verify these results. Yet,
one possible explanation for these findings is the strong
effect of slow-paced breathing on cardiac vagal activity
(Laborde et al., 2022; Sevoz-Couche & Laborde, 2022)
that might have overshadowed any other effects of water
temperature, movement, or type of immersion. Future re-
search should observe breathing alongside cardiac vagal
and sympathetic activity to investigate the role of breath-
ing frequency and breath-holding.

We encourage future research to focus on face immer-
sion, given that we found the effects to be comparable to
full-body immersion. This is in line with studies that found
no changes in heart rate due to head-out water immer-
sion (Christie et al., 1990; Park et al., 1999). Moreover, its
implementation appears particularly adequate in a large
range of practical applications, such as sport (Al Haddad
et al., 2010; Mosley & Laborde, 2022; Schnell et al., 2018),
psychotherapy (Kyriakoulis et al., 2021), and medicine
(Takahashi et al., 2020; Winter et al., 2018), in comparison
to full-body immersion. Regarding the effectiveness of such
interventions for a given individual, it is important to note
that the effects of the diving response on heart rate (and
thus, potentially, cardiac vagal activity) vary among hu-
mans (Caspers et al., 2011; Lindholm & Lundgren, 2009).
Conceivable causes for this variation might be found in
the potential influences of inter-individual differences in
sensitivity of chemoreceptor and baroreceptor reflexes

(Berntson et al., 1997; Houtveen et al., 2002), as well as in
respiratory behavior (Grossman et al., 2004; Grossman &
Kollai, 1993; Ritz & Dahme, 2006).

Additionally, the effects of repeated face immersion
on cardiac vagal activity should be investigated, given an
increase in the maximal apneic duration of 54% over five
maximal apneas with face immersion have been found in
healthy individuals (Schagatay et al., 2001). Simultaneous
investigation of both cardiac parasympathetic and sympa-
thetic activity, as well as other factors such as blood pres-
sure might result in greater insight into the responsible
mechanisms. Finally, it has never been tested whether a
long-term intervention, example, 30 days, might lead to ef-
fects on RMSSD that outlast the exposure.

5 | CONCLUSION

To summarize, the diving response has been found to be
moderately effective in increasing RMSSD during expo-
sure. However, no effect has been found when comparing
pre- to post-exposure conditions. Immersion was found to
be the only significant moderator of the results. Yet, some
moderator categories were largely underrepresented and
should be further investigated before making definitive
conclusions.

To conclude, research about the diving response holds
many promises for both the research and applied psycho-
physiology fields. The current systematic meta-analysis
may raise more questions than it answered, but we hope to
stimulate the interest of researchers and practitioners to-
ward a better understanding of this simple yet potentially
effective technique to voluntarily influence the autonomic
nervous system.
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