
Psychophysiology. 2022;00:e14183.	﻿	     |  1 of 18
https://doi.org/10.1111/psyp.14183

wileyonlinelibrary.com/journal/psyp

1   |   INTRODUCTION

In recent years, the diving response has received remark-
able attention regarding improving mental health and 
well-being (Pubmed search “diving response” from 0 to 

2010 = 125 articles, from 2011 to 2022 = 372 articles). This 
line of research has shown promising results, including 
reducing symptoms of depression, followed by a gradual 
reduction and eventually cessation of medication (van 
Tulleken et al., 2018), increases in well-being and positive 
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Abstract
This article aimed to synthesize the various triggers of the diving response and 
to perform a meta-analysis assessing their effects on cardiac vagal activity. The 
protocol was preregistered on PROSPERO (CRD42021231419; 01.07.2021). A 
systematic and meta-analytic review of cardiac vagal activity was conducted, 
indexed with the root mean square of successive differences (RMSSD) in the 
context of the diving response. The search on MEDLINE (via PubMed), Web of 
Science, ProQuest and PsycNet was finalized on November 6th, 2021. Studies 
with human participants were considered, measuring RMSSD pre- and during 
and/or post-exposure to at least one trigger of the diving response. Seventeen pa-
pers (n = 311) met inclusion criteria. Triggers examined include face immersion 
or cooling, SCUBA diving, and total body immersion into water. Compared to 
resting conditions, a significant moderate to large positive effect was found for 
RMSSD during exposure (Hedges' g = 0.59, 95% CI 0.36 to 0.82, p < .001), but 
not post-exposure (g = 0.11, 95% CI −0.14 to 0.36, p = .34). Among the consid-
ered moderators, total body immersion had a significantly larger effect than fore-
head cooling (QM = 23.46, df = 1, p < .001). No further differences were detected. 
Limitations were the small number of studies included, heterogenous triggers, 
few participants and low quality of evidence. Further research is needed to inves-
tigate the role of cardiac sympathetic activity and of the moderators.
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mood (Massey et al., 2020), reduction in both panic symp-
toms (Kyriakoulis et al.,  2021) and acute psychosocial 
stress responses (Richer et al., 2022). One possible expla-
nation of these findings might be a connection of the div-
ing response to the neurovisceral integration model (Smith 
et al., 2017; Thayer et al., 2009; Thayer & Lane, 2000). This 
article aims to synthesize the various triggers of the div-
ing response and their effects on cardiac vagal activity, to 
provide further insight into the underlying psychophysi-
ological mechanisms, and to lay the foundation for more 
effective interventions.

The diving response was first described by Paul Bert in 
1870 and is a very important oxygen conserving mecha-
nism (Bert, 1870; Gooden, 1993; Shattock & Tipton, 2012) 
that occurs in all air-breathing animals so far tested, in-
cluding human beings (Elsner & Gooden,  1983; Elsner 
et al., 1971; Gooden, 1993; Lindholm & Lundgren, 2009). 
It is triggered by breath-hold diving and involves a 
characteristic pattern of respiratory, cardiac and vascu-
lar responses (Elsner & Gooden,  1983). To be specific, 
the diving response may be defined as a combination 
of (a) increased sympathetic outflow to the periphery 
(Leuenberger et al.,  2001) with consequent peripheral 
vasoconstriction and reduced blood flow to peripheral 
capillary beds (Elsner et al.,  1971), rising mean arterial 
blood pressure (Gooden, 1993), and (b) parasympathetic 
activation marked by bradycardia, that is, a reduction in 
heart rate (Elia et al., 2021; Elsner & Gooden, 1983; Foster 
& Sheel, 2005; Lindholm & Lundgren, 2009; Shattock & 
Tipton, 2012). In particular, via the nucleus tractus soli-
tarii, the diving response is expected to have substantial 
effects on cardiac vagal activity, the activity of the vagus 
nerve regulating cardiac functioning (Foster & Sheel, 2005; 
Gooden, 1993; Lindholm & Lundgren, 2009; Shattock & 
Tipton, 2012).

While these effects on cardiac vagal activity have 
been investigated on various occasions, to date, there is 
no comprehensive overview of the effects of the vari-
ous diving response triggers on cardiac vagal activity in 
humans. Previous reviews, while contributing greatly 
to our knowledge, focused on specific and different re-
search questions. This focus includes animals (Panneton 
& Gan,  2020; Ponganis et al.,  2017), different physiolog-
ical aspects, such as those involved in increased apnea 
duration (Caspers et al., 2011; Elia et al., 2021; Patrician 
et al., 2021; Pendergast et al., 2015), or on autonomic con-
flict (i.e., the activation of two antagonistic autonomic 
responses to cold water submersion, one being the cold 
shock response triggering a sympathetically driven tachy-
cardia, and the other being the diving response triggering 
a parasympathetically mediated bradycardia) (Shattock & 
Tipton, 2012). While the models presented in these arti-
cles attribute the bradycardia to increased cardiac vagal 

activity without further explanation, some further details 
about the mechanisms at stake may be found in Shattock 
and Tipton (2012) and Foster and Sheel (2005). However, 
to date, no meta-analysis investigating the effects of differ-
ent diving response triggers on cardiac vagal activity has 
ever been performed, a gap sought to be addressed in the 
current article.

Discovering optimal triggers of the diving response, 
that is, effective, cheap and easy to implement, is rele-
vant for both research and applied purposes. In the psy-
chotherapeutic treatment of panic disorder, for example, 
one major challenge when fear is elicited is the patient's 
dysregulated autonomic nervous system. Cold water face 
immersion has been found to decrease anxiety and panic 
symptoms (Kyriakoulis et al., 2021). Facial cooling using 
ice packs, on the other hand, reduces stress responses in 
healthy participants (Richer et al., 2022). In both these ex-
amples it remains unclear why exactly these results occur, 
and which intervention should be preferred by a practi-
tioner. Furthermore, these interventions suggest that the 
diving response can be triggered independently of breath-
holding, which is in accordance with the model by Foster 
and Sheel  (2005). Thus, the diving response holds very 
promising potential as an intervention in psychotherapy 
(Kyriakoulis et al., 2021; Massey et al., 2020; van Tulleken 
et al., 2018), the work place (Richer et al., 2022), and as 
a recovery strategy for athletes (Al Haddad et al., 2010). 
Yet, to fully develop this potential, it is mandatory to un-
derstand the mechanisms behind the diving response and 
its effects on health, well-being, and performance. Due to 
its suggested effects on cardiac vagal activity, one possible 
explanation could be found in the neurovisceral integra-
tion model (Smith et al., 2017; Thayer et al., 2009; Thayer 
& Lane, 2000).

The neurovisceral integration model proposes 
that a central autonomic network plays an important 
role in both emotional well-being and cognitive per-
formance, with its functioning reflected in cardiac 
vagal activity; that is the activity of the vagus nerve 
regulating cardiac functioning (Smith et al.,  2017; 
Thayer et al.,  2009; Thayer & Lane,  2000). Cardiac 
vagal activity can be indexed non-invasively using 
heart rate variability (HRV) (Berntson et al.,  1997). 
HRV represents the variation in the time intervals 
between successive heartbeats. In order to evaluate 
cardiac vagal activity, the HRV parameters assess the 
root mean square of successive differences (RMSSD) 
(Berntson et al., 1997; Malik et al., 1996) and a breath-
ing frequency of 9 to 24 cycles per minute, the high 
frequency (HF) (Berntson et al.,  1997; Kromenacker 
et al., 2018). In the current analysis, we want to com-
pare the diving response in different breathing condi-
tions (e.g., breath-hold, breathing through a snorkel, 
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or SCUBA diving), potentially affecting breathing fre-
quency. Consequently, because RMSSD is less affected 
by breathing influences (Penttilä et al.,  2001), only 
RMSSD was considered for the present meta-analysis, 
allowing comparison between various breathing 
conditions.

There are several ways to trigger the diving re-
sponse, such as facial immersion in water (Al Haddad 
et al., 2010; Kinoshita et al., 2006), and total body sub-
mersion. In both cases, variations may include breath-
hold (Costalat et al.,  2015; Schipke & Pelzer,  2001), 
breathing through a snorkel (Al Haddad et al.,  2010; 
Schipke & Pelzer, 2001), or, for total body submersion 
only, case self-contained underwater breathing appa-
ratus (SCUBA) diving (Chouchou et al., 2009; Lundell 
et al.,  2019; Lundell et al.,  2021; Noh et al.,  2018; 
Schipke & Pelzer, 2001; Weist et al., 2012). A third po-
tential trigger is cooling of the face (e.g., using an ice 
pack) (Allen et al.,  1992; Louis et al.,  2015; Ruschil 
et al.,  2021; Schlader et al.,  2016). However, it is yet 
unclear to which extent these triggers affect cardiac 
vagal activity. Thus, the current article aims to system-
atically synthesize this information and conduct two 
meta-analyses of the existing literature about RMSSD 
pre-exposure compared to exposure and pre- compared 
to post-exposure.

Given the multitude of triggers of the diving re-
sponse, several potential moderators were also consid-
ered. According to the model of the diving response by 
Foster and Sheel  (2005), apnea is essential to experienc-
ing the full diving response, and cold water (<15°C) leads 
to larger effects than warm water (>15°C) (Asmussen & 
Kristiansson, 1968; Daly, 1997; Mukhtar & Patrick, 1986). 
Thus, water temperature and apnea (versus breathing, 
for instance via snorkel or SCUBA diving) were investi-
gated as moderators. Further, we differentiated between 
face and total body immersion. Cooling of the body up to 
the breastbone is associated with increased cardiac vagal 
activity (Kovacs & Baker, 2014); hence, different types of 
immersion might have different effects on cardiac vagal 
activity. Movement (versus remaining still during expo-
sure to the trigger) was investigated as a moderator, be-
cause cardiac vagal activity decreases during movement 
(Stanley et al., 2013).

2   |   METHOD

The Preferred Reporting Items for Systematic Reviews and 
Meta-Analyses (PRISMA) guidelines (Moher et al., 2009; 
Page, McKenzie, et al.,  2021; Page, Moher, et al.,  2021; 
Shamseer et al.,  2015) were adopted for the literature 
search and writing process. The PRISMA checklist is 

provided as a supplementary file. The protocol was regis-
tered on PROSPERO (CRD42021231419) before the analy-
sis (last edited version: 01.07.2021).

2.1  |  Information sources

The literature search was conducted using MEDLINE (via 
PubMed), Web of Science, ProQuest, and PsycNet from 
inception until November 6th, 2021. The following search 
string was used for all libraries: ((“diving reflex”[MeSH] 
OR “diving response” OR “water immersion” OR “water 
submersion” OR “dive reflex” OR “facial immersion” OR 
“facial submersion” OR “SCUBA” OR “snorkel” OR “div-
ing” [MeSH] OR “facial cooling”) AND (“HRV” OR “heart 
rate variability” OR “parasympathetic” OR “vagal” OR 
“vagus” OR “RMSSD”)). One researcher extracted eligible 
articles (LP, see acknowledgements) that were then inde-
pendently checked by another reviewer (MRe). Discussion 
with a third researcher (SA) resolved any disagreements 
between the two reviewers.

2.2  |  Eligibility criteria

Eligible studies were selected using the following PICOS 
criteria.

2.2.1  |  Population

The scope of this review is restricted to human beings, 
and therefore any studies conducted on animals were ex-
cluded. No inclusion or exclusion criteria were set for par-
ticipants' health conditions, age ranges, or gender.

2.2.2  |  Intervention

This systematic review and meta-analysis targeted all em-
pirical studies examining the acute effects of the diving 
response induced by the various triggers (face immersion, 
total body submersion, and cooling of the entire face) on 
RMSSD. Studies involving cognitive or emotional tasks 
while underwater were excluded.

2.2.3  |  Comparison

Studies measuring RMSSD before and during, and/or 
before and after triggering the diving response were in-
cluded in this analysis. The pre-exposure condition was 
used as the control condition.
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2.2.4  |  Outcomes

The study had to be empirical and assessed the diving re-
sponse's influence on RMSSD.

2.2.5  |  Study design

Controlled mixed and within-subject-designs were con-
sidered. Non-peer-reviewed works without a complete 
methods section (such as published abstracts), as well as 
single-case studies, were excluded.

In addition, only studies in English and German that 
were published or pre-registered for publication in peer-
reviewed scientific journals were considered. If necessary, 
authors were contacted and asked to provide missing data. 
Yet, despite contacting the authors, three articles (Berry 
et al.,  2017; Louis et al.,  2015; Schirato et al.,  2018) had 
unclear RMSSD data with missing information on mod-
erators or the included participants. Thus, these articles 
were excluded from the meta-analysis but still considered 
in the systematic review. No restrictions were made re-
garding the year of publication.

2.3  |  Risk of bias

Two researchers independently (SV & DS) assessed the 
risk of bias for each included study using the Cochrane 
risk-of-bias tool (Sterne et al., 2019). Each study was clas-
sified into one of the following categories: low risk, some 
concerns, or high risk of bias. The Cochrane risk-of-bias 
tool utilizes the “intent-to-treat principle” that focuses 
on the intervention assignment. As such, the fixed set of 
items used in the risk of bias appraisal is “bias arising from 
the randomisation process”; “bias due to deviations from 
intended interventions”; “bias due to missing outcome 
data”; “bias in measurement of the outcome”; and “bias 
in the selection of reported results” as well as the overall 
risk of bias assessment for each study. The overall risk of 
bias was determined based on the highest classification 
among the five risk categories. The inter-rater agreement 
coefficient was calculated by comparing each of the item's 
risk of bias appraisal as well as the overall risk of bias judg-
ment between both researchers. Disagreements between 
the two researchers regarding the risk of bias were dis-
cussed between the two assessors (SV & DS) in every case.

The initial inter-rater agreement coefficient was calcu-
lated for each domain category as a sum of the agreement 
scores divided by the number of graded items. The initial 
disagreements between authors (SV & DS) were resolved 
via discussion of the signaling questions and everyone's 
impression of the category, with the final resolution being 

in favor of the stricter ranking. This way of resolving ini-
tial disagreements led to a 100% inter-rater agreement 
coefficient.

2.4  |  Synthesis of results

The following data were extracted from each study: par-
ticipants' demographic data, RMSSD values (mean and 
standard deviation [SD]) of the various conditions, the 
method for inducing the diving response, and information 
about the moderators listed above.

RMSSD means and SD were pooled following the 
guidelines in the Cochrane Handbook (see formulae in 
chapter 6.5.2.10 Combining groups, Table 6.5.a) (Higgins 
et al., 2019). The tables used are accessible via Open 
Science Framework (DOI 10.17605/OSF.IO/9W2QY or 
https://osf.io/9w2qy/​?view_only=61462​76c0a​13434​69a6d​
d5d65​b7bfd6c).

In the within-subjects-designs, data were pooled into 
one mean and SD for each pre- and during and/or post-
exposure. Differences between the total studies' sample 
size and the sample size used in this analysis are due to 
additional conditions which were not relevant for this 
meta-analysis (e.g., comparison of different breathing 
gases), and missing data in individual cases (e.g., because 
of technical issues during the measurement).

2.5  |  Statistics

Statistical analyses were conducted using R (version 4.1.0). 
The script can be accessed via Open Science Framework 
(see 2.4).

All outcome measures were standardized using 
Hedges' g for changes from pre- to exposure, and pre- to 
post-exposure conditions. The Hedges' g (SMD =  MD/
SDpooled) and its standard error were computed accord-
ing to the formula for crossover trials from the Cochrane 
Handbook (chapter 23, section 23.2.7.2). The standard 
error computation required the imputation of a correla-
tion coefficient between the pre- and during exposure, 
and between the pre- and post-exposure RMSSD values. 
To do so, correlation coefficients were computed from 
the available (or provided by the authors) raw values in 
the included studies. Then, these coefficients were av-
eraged per condition ((0.39 +  0.29 +  0.35)/3  =  0.34 for 
pre-during and (0.73 + 0.59)/2 = 0.69 for the pre-post). 
To assess the reliability of the emitted coefficients, sen-
sitivity analyses were run up to the averaged coeffi-
cients of correlation ±0.10 per 0.05 interval (0.24, 0.29, 
0.39, 0.44 for pre-during and 0.59, 0.64, 0.74, 0.79 for 
the pre-post; emitted data files available on OSF). Only 
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minor differences in the relationships between effects 
sizes, significance tests, and moderator analyses were 
detected. Thus the conclusions remained unaltered, 
underlining the reliability of our results. A positive g de-
notes an increase in RMSSD during the exposure or the 
post-exposure condition. Hedges' g of 0.2, 0.5, and 0.8 
are, respectively, considered small, moderate, and large 
(Cohen, 1977; Hedges & Olkin, 1985).

Outcomes across studies were pooled using a random-
effects model (Higgins et al., 2019). Between-study hetero-
geneity was quantified using tau2 (variance of true effects, 
using Hedges' estimator [Hedges & Olkin, 1985]), and fur-
ther assessed using I2, which provides the percentage of 
the observed variance reflecting the variance of the true 
effects rather than sampling error (Higgins et al.,  2003). 
The prediction interval was computed to consider the 
potential effect of the diving response on cardiac vagal 
activity when reported in an individual study setting, 
as this may be different from the average effect (Riley 
et al., 2011). The Hartung and Knapp method was used to 
adjust confidence intervals and test statistics (Hartung & 
Knapp, 2001a, 2001b; IntHout et al., 2014).

Cook's distance with a cutoff of 0.45 was used to de-
tect potential outliers (Das & Gogoi, 2015). If outliers were 
found, the analyses were to be performed both with and 
without the outliers and the differences, potential reasons 
for the outliers as well as implications were discussed. 
Potential asymmetry was assessed by visually inspecting 
the funnel plots. Furthermore, when at least ten studies 
were available, the asymmetry was assessed using Egger's 
test. If evidence for asymmetry was found (p < .1 on the 
Egger's test), the Duval and Tweedie trim and fill method 
was used to quantify the magnitude of the small study ef-
fect (Duval & Tweedie, 2000).

To detect moderator effects, subgroup analyses were 
applied to the categorical variables of interest (i.e., type 
of immersion, movement and breathing). Q-tests were 
performed to evaluate differences between subgroups 
(Higgins et al., 2019). A meta-regression was used to an-
alyze the moderating effect of the continuous variable 
temperature (Borenstein & Higgins, 2013). The predictive 
value of this continuous moderator was evaluated by the 
goodness of fit (R2) and significance at the p = .05 level.

2.6  |  Certainty of evidence 
(grading of recommendations, assessment, 
development, and evaluation [GRADE] 
approach)

After the analysis, SA and SB assessed the quality of evi-
dence independently using the GRADE approach (Ryan 
& Hill, 2018). The evidence was graded based on the risk 

of bias assessments, inconsistency, indirectness, impre-
cision, and publication bias. The quality of evidence can 
be high, moderate, low, or very low. An overall judgment 
about the certainty of evidence was assigned for both the 
pre- during-, and the pre- post-exposure comparisons.

3   |   RESULTS

Figure 1 describes the selection process. After removing 
duplicates, the first step was to screen all identified arti-
cles based on their title and abstract. Step two was to scan 
the full-text versions, leaving 29 articles in the selection 
process. The authors were then contacted and asked to 
provide missing data (e.g., RMSSD means and SD that 
were not reported or unclear). Due to unclear RMSSD 
data (Berry et al.,  2017; Louis et al.,  2015; Schirato 
et al., 2018), three articles were removed from the meta-
analyses and retained only for the systematic review. Ten 
articles that reported heart rate (Ferrigno et al.,  1991; 
Hayashi et al., 1997; Hurwitz & Furedy, 1986; Khurana & 
Wu, 2006; Marabotti et al., 2013; Simmons et al., 2017) or 
HRV parameters other than RMSSD (Costalat et al., 2021; 
Kinoshita et al.,  2006; Kiviniemi et al.,  2012; Wieske 
et al., 2013) had to be excluded because no RMSSD data 
were provided. One article did not provide pre- exposure 
RMSSD values (Lemaître et al., 2008). A total of 17 articles 
were eligible for the systematic review, among which 13 
were included in the meta-analysis (k = 14) investigating 
the effect on RMSSD pre- compared to during exposure. 
Six were included in the meta-analysis (k = 7) investigat-
ing the effect on RMSSD pre- compared to post-exposure. 
One article reported two independent effect sizes for each 
condition (Schlader et al., 2016).

3.1  |  Participant characteristics

As shown in Table 1, the total number of participants in 
the 17 included studies was 311 (80.1% male), with a mean 
age of 34.6 ± 6.6 years. The included studies only investi-
gated healthy participants, with an overall mean height of 
177.3 ± 5.7 cm, mean weight of 77.7 ± 10.0 kg, and mean 
body mass index of 24.7 ± 1.8 kg/m2.

3.2  |  Risk of bias

For the overall risk of bias assessment, according to the 
Cochrane Risk of Bias tool, all studies were ranked as hav-
ing “some concerns” (Figure 2).

Figure 2 shows the breakdown of each study's domain 
rankings.
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3.3  |  Diving response inducing 
interventions

As shown in Table 1, the diving response triggers differ sub-
stantially among studies. One of the included trials tested 
the effect of facial immersion (Al Haddad et al.,  2010) of 
facial cooling (Schlader et al.,  2016), two of forehead cool-
ing (Jarczok et al. unpublished, DRKS00016597) (Ruschil 
et al., 2021) and 12 of total body immersion (Berry et al., 2017; 
Chouchou et al., 2009; Costalat et al., 2015; Lundell et al., 2019; 
Lundell et al.,  2021; Noh et al.,  2018; Schaller et al.,  2021; 
Schipke & Pelzer, 2001; Schirato et al., 2018; Solana-Tramunt 
et al., 2019; Vicente-Rodríguez et al., 2020; Weist et al., 2012). 
Two trials tested immersion combined with apnea (Costalat 
et al., 2015; Vicente-Rodríguez et al., 2020), two with snorkel 
breathing (Al Haddad et al., 2010; Schipke & Pelzer, 2001), 
and nine trials tested the effect of SCUBA diving (Berry 
et al.,  2017; Lundell et al.,  2019; Lundell et al.,  2021; Noh 
et al.,  2018; Schaller et al.,  2021; Schipke & Pelzer,  2001; 
Schirato et al., 2018; Weist et al., 2012). Another five stud-
ies did not use any breathing device or aid (Jarczok et al. 
unpublished, DRKS00016597) (Louis et al.,  2015; Ruschil 
et al., 2021; Schlader et al., 2016; Solana-Tramunt et al., 2019). 

Nine studies used cold water, ice bags or in one case cry-
ostimulation to induce the diving reflex (Jarczok et al. un-
published, DRKS00016597) (Al Haddad et al.,  2010; Louis 
et al.,  2015; Lundell et al.,  2019; Lundell et al.,  2021; Noh 
et al., 2018; Ruschil et al., 2021; Schaller et al., 2021; Schlader 
et al., 2016), whereas the other seven used water above 15°C 
(Berry et al., 2017; Chouchou et al., 2009; Costalat et al., 2015; 
Schipke & Pelzer, 2001; Solana-Tramunt et al., 2019; Vicente-
Rodríguez et al., 2020; Weist et al., 2012). In three studies, 
the exposure condition was dynamic (Chouchou et al., 2009; 
Solana-Tramunt et al., 2019; Vicente-Rodríguez et al., 2020). 
In one study, movement status was not reported (Lundell 
et al.,  2021) and in every other case, the participants re-
mained static during exposure.

3.4  |  Primary analysis

3.4.1  |  Pre-exposure compared to 
during exposure

The relation between RMSSD pre-exposure and during 
exposure (k = 14) had an average effect size of 0.59 (95% 

F I G U R E  1   PRISMA flow diagram of the search process for studies examining the effect of various triggers of the diving response on the 
HRV parameter RMSSD. HRV, heart rate variability; PRISMA, preferred reporting items for systematic reviews and meta-analysis; RMSSD, 
root mean square of successive differences.
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CI 0.36 to 0.82, p < .001), indicating a moderate positive 
effect (Figure  3). The heterogeneity was large (predic-
tion interval [−0.01 to 1.19]) with a small to moderate 
part representing the variance of the true effect (I2 = 35%; 
Tau2 = 0.06; Figure 3) and the rest being due to sampling 
error. The prediction interval (g = −0.01 to 1.19) also in-
dicates that future studies are likely to have null or large 
positive effects. No outlier was detected. No asymmetry 
was detected, neither visually nor by Egger's test (inter-
cept = 0.075, p = .252). Finally, the quality of evidence was 
rated as low (Table 2).

3.4.2  |  Pre-exposure compared to post-
exposure

The relation between RMSSD pre-exposure and post-
exposure (k = 7) had an average effect size of 0.11 (95% 
CI −0.14 to 0.36, p = .34, Figure 3). The heterogeneity was 
large (prediction interval [−0.46 to 0.68]) with a small to 
moderate part representing the variance of the true effect 
(I2 = 46.5%; Tau2 = 0.04; Figure 3) and the rest being due to 
sampling error. The prediction interval (g = −0.46 to 0.68) 
indicates that future studies are likely to have between 

F I G U R E  2   Risk of bias analysis. (+), low risk; (+/−) low risk/some concerns; (−) some concerns.

F I G U R E  3   Forest plots of the comparison pre-exposure to exposure (a) and of the comparison pre- to post-exposure conditions (b). 
SMD, standardized mean difference; CI, confidence interval.
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moderate negative and moderate to large positive effects. 
While the use of this information is very limited, it illus-
trates the heterogeneity in the results and the small sam-
ple of studies captured, leading to the large heterogeneity 
in the prediction interval. No outlier was detected. Visual 
inspection indicated no asymmetry. Due to the small 
number of studies, neither the Egger's test nor the trim 
and fill analysis were performed. The quality of evidence 
was rated as very low (Table 2).

These results indicate that the diving response was as-
sociated with increased cardiac vagal activity during but 
not after exposure. One can note that the results described 
in the article only included in the systematic review 
(Schirato et al., 2018) were going in the same direction as 
the meta-analysis's average effect comparing pre- to post-
exposure conditions.

3.5  |  Moderator analyses

Because too few of the included studies presented results 
comparing a pre-exposure to a post-exposure condition 
(k = 7), it was only possible to run a moderator analysis 
for the comparison between the pre-exposure and ex-
posure conditions. However, all the moderators were 
asymmetrically distributed, with some categories largely 
underrepresented (k = 1 or 2), leading to averaged effects 
per category being primary individual-study-dependent 
and not fully assessing the moderators' effect. Thus, all 
results presented in these moderator analyses should not 
be considered as conclusive pieces of evidence but only as 
indicators of the current state of research depicted in the 
current meta-analysis.

3.5.1  |  Cooling/immersion

Face cooling or immersion (k = 3, g = 0.65, 95% CI −0.59 
to 1.90), total body immersion (k  =  9, g  =  0.69, 95% CI 
0.43 to 0.96) and forehead cooling (k = 2, g = 0.10, 95% CI 
−0.46 to 0.66) effects on RMSSD were significantly differ-
ent (QM = 26.10, df = 2, p < .001). Post-hoc head-to-head 
tests showed that total body immersion had a significantly 
larger effect than forehead cooling (QM  = 23.46, df  =  1, 
p  < .001); however, face cooling or immersion did not 
(QM = 3.55, df = 1, p = .060). No further differences were 
detected.

3.5.2  |  Movement

One of the studies (Lundell et al.,  2021) had to be ex-
cluded from this moderator analysis because whether the T
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participants moved or remained still during the dive was 
not made clear. Movement (k = 2, g = 0.70, 95% CI −1.95 
to 3.35) and remaining still (k = 11, g = 0.58, 95% CI 0.28 
to 0.88) effects on RMSSD were not significantly different 
(QM = 0.24, df = 1, p = .630).

3.5.3  |  Breathing

Only one study was in the category breath-holding, thus 
no group difference was run. Yet, one can mention that 
the average effect in the breathing category was g = 0.61, 
95% CI 0.36 to 0.86 (k = 13) and g = 0.36, 95% CI −0.29 to 
1.01 in the breath-holding category (k = 1).

3.5.4  |  Water temperature

A meta-regression was used to investigate temperature as 
a continuous moderator and revealed that temperature 
accounted for none of the heterogeneity in the results 
(R2 = 0%, df = 12, p = .372).

4   |   DISCUSSION

This article is the first systematic review and meta-
analysis assessing the effects of the diving response on 
cardiac vagal activity pre- compared to during- and pre- 
compared to post-exposure. Out of 17 articles included 
in the systematic review, 13 (reporting k = 14 independ-
ent effect sizes) were relevant for the meta-analysis 
pre- compared to during-, and six (reporting k = 7 inde-
pendent effect sizes) for the meta-analysis pre- to post-
exposure. The principal findings were a positive average 
effect for RMSSD during exposure (k = 14 g = 0.59; 95% 
CI 0.36 to 0.82), but not post-exposure (k = 7; g = 0.11; 
95% CI −0.14 to 0.36). In both meta-analyses, the het-
erogeneity was large, but the variance of the true effect 
was only small to moderate.

Three studies were part of the systematic review, re-
flecting to some extent our main findings, but had to be 
excluded from the meta-analysis (Berry et al., 2017; Louis 
et al., 2015; Schirato et al., 2018). In (Schirato et al., 2018), 
the authors found no difference between the resting and 
the recovery condition for the intervention group, but a 
significant increase in RMSSD for the second half of the 
recovery condition in the control group compared to the 
resting condition pre-submersion (Schirato et al.,  2018). 
The second study also found a significant increase in 
RMSSD during a six-hour dive (Berry et al., 2017). Finally, 
the third study compared RMSSD before and after ei-
ther a 24°C control condition or a −60°C whole-body 

cryostimulation in a between-subjects design (Louis 
et al., 2015). Each group participated in five identical tri-
als over five consecutive days. The results of this study 
showed that RMSSD (in %) changed moderately to largely 
on each of the five days in the intervention group and dif-
fered significantly from the control group on three days 
(Louis et al., 2015). The overall lack of a reliable effect on 
post-exposure might be interpreted as a sign of the abil-
ity of the parasympathetic nervous system to adapt to the 
new environment quickly. However, given the low quality 
of evidence of the pre-during comparison, as assessed by 
GRADE, and the very low quality of evidence of the pre-
post comparison, these results require further, systematic 
investigation.

As mentioned in the results section, the modera-
tor analysis was only possible for the condition pre- to 
during exposure. For the water temperature, it showed no 
effect (R2  = 0%, df  =  12, p  = .372). These results appear 
surprising at first because cold receptors of the face play 
an important role in the diving response, and thus, cold 
water has been found to cause a stronger reduction in 
heart rate than water above 15°C (Foster & Sheel, 2005). 
However, this might be explained by the breathing fre-
quency, which tends to be lower during diving (Hesser 
et al., 1990; Mummery et al., 2003; Salzano et al., 1984). 
Slow-paced breathing has been found to have a strong 
effect on cardiac vagal activity (Laborde et al.,  2017; 
Laborde et al., 2021; Laborde et al., 2022; Sevoz-Couche & 
Laborde, 2022; Wells et al., 2012), and apnea is discussed 
to be a stronger trigger of the diving response than tem-
perature (Foster & Sheel,  2005). The effect of breathing 
frequency might, therefore, have overshadowed the effect 
of water temperature.

Because of the necessary activation of the body, move-
ment is usually associated with a decrease in RMSSD 
(Laborde et al., 2018; Stanley et al., 2013). Here, however, 
it did not influence RMSSD during exposure compared 
to individuals being still (QM  = 0.24, df  =  1, p  = .630). 
However, as only two (Chouchou et al.,  2009; Vicente-
Rodríguez et al., 2020) of the included studies measured 
RMSSD in moving participants, these results require fur-
ther investigation.

The effects of breath-holding have been discussed as 
essential to experiencing the full diving response (Foster 
& Sheel, 2005). In the current review, the only study in-
cluded in the breath-holding category had a small to mod-
erate effect (g =  0.36), and thus, does not seem to align 
with this point. Yet, it is important to consider that the 
RMSSD response to breath-holding is made of two dis-
tinct phases (Costalat et al., 2015; Lemaître et al., 2008). 
Over the first half of the apnea (normoxic condition), the 
RMSDD is relatively stable (Costalat et al., 2015; Lemaître 
et al.,  2008). But, over the second phase of the apnea 
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(hypoxic condition), the RMSSD drastically increases 
(Costalat et al., 2015; Lemaître et al., 2008). In the current 
analysis, the RMSSD was averaged over the entire apnea, 
and thus it is very likely that the effects of the normoxic 
and hypoxic conditions were canceled out. More research 
on breath-holding and RMSSD as well as the influence of 
various breathing frequencies during water immersion 
on RMSSD is warranted. Future studies should consider 
observing participants' breathing patterns during the rest-
ing measurements before, after, and, in cases other than 
breath-hold diving, during immersion. This might shed 
light on the mechanisms influencing the diving response 
and explain the findings of the current moderator analysis 
(Grossman et al., 2004; Grossman & Kollai, 1993; Ritz & 
Dahme, 2006).

Regarding the immersion type, no difference was found 
between face immersion and total body immersion. This 
suggests that face immersion might be as effective as total 
body immersion in increasing RMSSD; however, more 
studies using face immersion are required to consider the 
effect of this moderator properly. Finally, a significantly 
larger effect size was found for both total body immersion 
(k = 9, g = 0.69, 95% CI 0.43 to 0.96) compared to forehead 
cooling (k = 2, g = 0.10, 95% CI −0.46 to 0.66). These re-
sults suggest that forehead cooling is a less efficient trigger 
of the diving response from a cardiac vagal activity per-
spective. Nevertheless, due to the small number of studies, 
further investigation is required to confirm that face im-
mersion is a more effective trigger than forehead cooling.

4.1  |  Limitations

Despite the findings of the present systematic review and 
meta-analysis about the effects of the diving response on 
RMSSD, several important limitations exist. First, the 
numbers of studies and of independent effect sizes were 
relatively low (pre- vs. during exposure meta-analysis: 
k  =  14; pre- vs. post-exposure meta-analysis: k  =  7). 
Second, the included studies varied substantially regard-
ing triggers used, duration of exposure to the trigger, par-
ticipant's diving experience, and depth of the dive. Third, 
sample sizes were rather small throughout most of the 
included studies (n < 30). Thus, the statistical power and 
the implications of the results in general and the modera-
tor analysis specifically are limited (e.g., only two of the 
included studies investigated the diving response by face 
immersion). Fourth, multiple moderator categories' dis-
tributions were asymmetrical, with several being largely 
underrepresented, limiting our results' extent.

Additional limitations might arise from the fact that the 
Cochrane Risk-of-Bias tool is not specialized in HRV mea-
surements. Different measurement tools and frequencies, 

as well as different measurement periods were used in the 
various studies, which might affect the quality of the in-
cluded studies.

4.2  |  Research perspectives

The research about the effect of the diving response on 
cardiac vagal activity in humans appears to still be in 
its early stages in general. While the theoretical model 
of Foster and Sheel  (2005) explaining the cardiorespira-
tory mechanisms of the diving response provides a solid 
foundation regarding the mechanisms of the diving re-
sponse, several inconsistencies need to be addressed in 
future research. Firstly, the assumption that the brady-
cardia observed in the diving response solely results from 
an increased cardiac vagal activity is challenged by the 
results of one of the study included in this systematic 
review (Costalat et al., 2015), as well as by the results of 
other studies not included (Gallo Jr. et al., 1988; Kiviniemi 
et al., 2012; Lemaître et al., 2008). In these studies, cardiac 
vagal activity remained constant for the first half of the 
maximal breath-hold dive and increased exponentially 
during the second half, while the heart rate decreased im-
mediately, and showed an additional reduction during 
the second half. Thus, increased parasympathetic activity 
might only cause further bradycardia in the second half of 
a breath-hold dive, while the main reason for the strong 
bradycardia observed during the first half of the breath-
hold dive might be decreased cardiac sympathetic activity, 
or another mechanism. For example, mechanical influ-
ences on heart rate as part of the diving response have 
also been suggested (Shattock & Tipton, 2012); however, 
the precise nature of these influences, under which condi-
tions they occur, and their particular effects have yet to be 
investigated.

Understanding these mechanisms is important both 
from an applied, as well as from a theoretical perspec-
tive (Foster & Sheel,  2005; Shattock & Tipton,  2012). 
According to the neurovisceral integration model, cardiac 
vagal activity is related to emotion regulation and cogni-
tive performance (Smith et al., 2017; Thayer et al., 2009; 
Thayer & Lane, 2000). Therefore, if an increased cardiac 
vagal activity is the causal link between (breath-hold) face 
immersion and the observed bradycardia, a bowl of cold 
water might be an effective intervention, e.g., before job 
interviews and certain athletic tasks (penalty, free throw, 
playing darts, etc.). On the other hand, if a reduced car-
diac sympathetic activity is responsible for the bradycar-
dia, or perhaps a different explanation altogether, the 
possible applications might be different. As face immer-
sion is already being investigated as a recovery strategy (Al 
Haddad et al.,  2010) and in psychotherapy (Kyriakoulis 
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et al.,  2021), understanding exactly how it works and 
which triggers offer the best compromise (strong, signif-
icant effects, and cheap, easy to implement), is important 
to improve such interventions.

Therefore, future research should combine cardiac 
vagal activity measurements with other markers, such as 
the pre-ejection period measured with impedance cardiog-
raphy to index cardiac sympathetic activity (Forouzanfar 
et al.,  2018; Sherwood et al.,  1990). Furthermore, when 
investigating the diving response in a systematic and con-
trolled manner, example, for 30 s per condition (Kinoshita 
et al., 2006), measuring the maximal breath-hold time is 
essential to put the fixed conditions in perspective. While 
RMSSD might be increased in someone who can breath-
hold dive for 35 s, there might be no significant changes 
in someone who can breath-hold dive for several minutes. 
Without considering the maximal breath-hold time, the 
misleading conclusion might be that a certain trigger is 
ineffective when the exposure was too short.

Secondly, according to the theoretical model of (Foster 
& Sheel, 2005), breath-holding is essential to experience 
the full effect of the diving response, and cold water causes 
a stronger response than warm (>15°C) water. Potentially 
due to the few studies included here and the large hetero-
geneity between diving response conditions, the results of 
the current moderator analyses do not support this claim. 
Further investigation is needed to verify these results. Yet, 
one possible explanation for these findings is the strong 
effect of slow-paced breathing on cardiac vagal activity 
(Laborde et al.,  2022; Sevoz-Couche & Laborde,  2022) 
that might have overshadowed any other effects of water 
temperature, movement, or type of immersion. Future re-
search should observe breathing alongside cardiac vagal 
and sympathetic activity to investigate the role of breath-
ing frequency and breath-holding.

We encourage future research to focus on face immer-
sion, given that we found the effects to be comparable to 
full-body immersion. This is in line with studies that found 
no changes in heart rate due to head-out water immer-
sion (Christie et al., 1990; Park et al., 1999). Moreover, its 
implementation appears particularly adequate in a large 
range of practical applications, such as sport (Al Haddad 
et al., 2010; Mosley & Laborde, 2022; Schnell et al., 2018), 
psychotherapy (Kyriakoulis et al.,  2021), and medicine 
(Takahashi et al., 2020; Winter et al., 2018), in comparison 
to full-body immersion. Regarding the effectiveness of such 
interventions for a given individual, it is important to note 
that the effects of the diving response on heart rate (and 
thus, potentially, cardiac vagal activity) vary among hu-
mans (Caspers et al., 2011; Lindholm & Lundgren, 2009). 
Conceivable causes for this variation might be found in 
the potential influences of inter-individual differences in 
sensitivity of chemoreceptor and baroreceptor reflexes 

(Berntson et al., 1997; Houtveen et al., 2002), as well as in 
respiratory behavior (Grossman et al., 2004; Grossman & 
Kollai, 1993; Ritz & Dahme, 2006).

Additionally, the effects of repeated face immersion 
on cardiac vagal activity should be investigated, given an 
increase in the maximal apneic duration of 54% over five 
maximal apneas with face immersion have been found in 
healthy individuals (Schagatay et al., 2001). Simultaneous 
investigation of both cardiac parasympathetic and sympa-
thetic activity, as well as other factors such as blood pres-
sure might result in greater insight into the responsible 
mechanisms. Finally, it has never been tested whether a 
long-term intervention, example, 30 days, might lead to ef-
fects on RMSSD that outlast the exposure.

5   |   CONCLUSION

To summarize, the diving response has been found to be 
moderately effective in increasing RMSSD during expo-
sure. However, no effect has been found when comparing 
pre- to post-exposure conditions. Immersion was found to 
be the only significant moderator of the results. Yet, some 
moderator categories were largely underrepresented and 
should be further investigated before making definitive 
conclusions.

To conclude, research about the diving response holds 
many promises for both the research and applied psycho-
physiology fields. The current systematic meta-analysis 
may raise more questions than it answered, but we hope to 
stimulate the interest of researchers and practitioners to-
ward a better understanding of this simple yet potentially 
effective technique to voluntarily influence the autonomic 
nervous system.
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